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The perfect pairing (PP) approximation from generalized valence bond theory is formulated in an unrestricted
fashion for both closed- and open-shell systems using a coupled cluster ansatz. In the model chemistry proposed
here, active electron pairs are correlated, but the unpaired or radical electrons remain uncorrelated, leading to
a linear number of decoupled cluster amplitudes which can be solved for analytically. The alpha and beta
spatial orbitals are variationally optimized independently. This minimal treatment of electron-electron
correlation noticeably improves upon symmetry-breaking problems and other pathologies in Hartree-Fock
(HF) theory and may be computed using the resolution of the identity approximation at only a factor of
several times more effort than HF itself. PP also generally predicts improved molecular structures over HF.
This compact, correlated wave function potentially provides a useful starting point for dynamical correlation
corrections.

I. Introduction

Standard wave-function-based electronic structure theory
generally begins with a mean-field Hartree-Fock (HF) com-
putation in order to obtain a qualitative description of the system
of interest. Often, the HF description is sufficiently accurate
that straightforward perturbative corrections such as second-
order Møller-Plesset perturbation theory (MP2) enable the
reliable prediction of chemical energetics and properties. The
success of the MP2 approach, however, is predicated on
obtaining a reasonable single-reference description of the system
from HF. In systems with unusually strong static electron-
electron correlations (radicals, diradicals, stretched bonds, and
transition states, for example), the qualitatively correct wave
function requires multiple determinants. In such cases, the HF
wave function contains only the single most important electronic
configuration and thereby biases subsequent electron-electron
correlation treatments in favor of this determinant over other
significant ones.

The usual approach in cases where HF behaves poorly is to
construct a multiconfigurational self-consistent field (MCSCF)
or complete active space self-consistent field (CASSCF)1 wave
function which captures the multiple significant configurations
to provide a description of the static correlations in the system.
For quantitative results, this wave function can be corrected with
multireference perturbation theories. Given an active space that
is sufficiently large, CASSCF, which incorporates all correla-
tions in the active space, qualitatively describes even highly
correlated systems very well. Unfortunately, its computational
cost grows factorially with the size of the active space, and
feasible CASSCF calculations can only contain up to about 14
electrons/orbitals at present. In MCSCF, this extreme compu-
tational cost is lowered by hand-selecting only those configura-
tions that the practitioner deems important. However, its
reliability and accuracy depend strongly on the skill of the user
in identifying and including the important configurations.
Additionally, the result is not a well-defined theoretical model
chemistry.2

The valence-orbital-optimized coupled cluster doubles (VOO-
CCD, or simply VOD) model was proposed several years ago
to approximate CASSCF and make it applicable to a wider
variety of systems.3,4 In VOD, a coupled cluster doubles (CCD)5

calculation in the active space approximates the full configu-
ration interaction (FCI) one in CASSCF, and the orbitals are
optimized to minimize the energy, as in CASSCF. This approach
breaks the link to the HF reference and instead finds the
reference determinant that minimizes the energy of the valence
space CCD wave function. In many cases, VOD performs
comparably to CASSCF at a much lower cost (N6), and it
enables one to simply choose all valence orbitals as active for
small to moderate-sized systems, thereby eliminating the
problem of choosing the chemically relevant active space.
Unfortunately, even this computational scaling is high, and it
limits practical VOD computations to about 15 non-hydrogen
atoms (fewer in large basis sets).

There are some other approaches for replacing the HF
reference function that should be mentioned. One promising
approach that has been recently explored by Rassolov6 uses an
antisymmetrized product of strongly orthogonal geminals. Even
simpler than this is to take just two functions to describe each
geminal, which leads to the so-called generalized valence bond
perfect pairing (PP) approximation.7-10

GVB-PP is a simple approximation to CASSCF which can
be viewed as a strongly local restriction of VOD. Instead of
includingN4 amplitudes in the wave function as in VOD, only
a linear number of amplitudes are used to form a set of alpha-
beta electron pairs, each of which resides in a spatial occupied
orbital and which are correlated with a single spatial virtual
correlating orbital. Though the model is somewhat crude, these
alpha-beta pair correlations comprise the leading terms in the
correlation energy expansion and are essential for describing
the breaking of bonds correctly. PP has also been applied to
the study of certain classes of diradicals with much success.11-13

Importantly, it is potentially very inexpensive to calculate. For
example, the pseudospectral approximation has been applied
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to speed the integral formation.14 Suggestions have also been
made for generalizations of the PP approach that include
interpair couplings15 or employ nonorthogonal orbitals.16 Ad-
ditionally, there has been considerable effort devoted to the
development of more sophisticated GVB wave functions that
lift the restriction of orthogonality.17,18

In this paper, we explore the feasibility of the simplest
possible extension beyond HF theory, which is PP. We
generalize the restricted PP approach to handle unrestricted
open- and closed-shell molecules. Our point of view is that we
want the result of bond-dissociation reactions to yield products
that are exactly those which would be computed from separate
calculations on the product fragments. For approximate treat-
ments of electron correlation, such as PP, this can only be
accomplished using unrestricted orbitals. Our implementation
is based on an extremely efficient algorithm for PP utilizing
the resolution of the identity approximation19-22 that introduces
errors on the order of tens of microhartrees per atom in total
energies. Turning from the methodology to chemistry, we will
show that the simple PP model for correlation often provides a
much improved starting point over HF for radicals and other
difficult systems. This improved reference is a viable alternative
to HF for many chemical problems and may be used subse-
quently for the treatment of additional correlations. Additionally,
some of its limitations will be revealed in our series of test
calculations.

II. Theory and Implementation

A. Coupled Cluster Perfect Pairing. In the perfect pairing
model, the wave function for a closed-shell system is written
as an antisymmetrized product of pair functions,gi, and core
orbitals,φi,

where the pair functions,gi, are defined as

The core orbitals,φi, active orbitals,ψi, and amplitudes,ti, are
determined variationally.

The same wave function can be rewritten as a simplified
coupled cluster (CC) wave function.23,24 In this case, it takes
the form

where|Φ0〉 is the reference determinant andT̂PP is the cluster
operator

In this notation,i is an alpha active orbital,ıj is the beta active
orbital paired withi, and i* and ıj* are the virtual orbitals that
correlate withi and ıj, respectively. In this formalism, thet
amplitudes are solved using projective techniques as in most
CC theories, rather than variationally. In the standard restricted
version of PP, the alpha and beta spatial orbitals are identical.
Here, we explicitly allow them to differ.

In the unrestricted ansatz, we separate the occupied space
into three subspaces. The first two are the core space and the
valence (or active) occupied pair space, containing equal
numbers of alpha and beta orbitals. We typically choose all
valence pairs to be active, but any chemically reasonable number

of active pairs can be used. In the active space, each alpha
occupied orbital is paired with one beta occupied orbital,
analogous to the restricted version. The third subspace contains
unpaired, alpha space singly occupied molecular orbitals (SO-
MOs). Only the paired, active occupied orbitals are correlated,
meaning that the SOMO electrons are treated in an unrestricted
HF (UHF)-like fashion.

The virtual space contains only two subspaces: active and
inactive. The singly unoccupied molecular orbitals (SUMOs)
are effectively part of the inactive virtual space. Of course, the
orbitals in PP are completely optimized, meaning that the five
alpha subspaces (and separately the four beta subspaces) mix
freely to minimize the energy.

This uncorrelated treatment of the radical electrons is
consistent with the PP treatment of electron pairs in a closed-
shell species undergoing bond dissociation. Once the bond is
stretched enough, the two electrons will localize to their
respective atomic centers and have zero correlation amplitude
between them. Any attempt to correlate these unpaired electrons
would therefore be inconsistent with the closed-shell PP model.

The PP coupled cluster equations are solved by constructing
a coupled cluster Lagrangian

where Λ̂PP ) ∑i
pairsλiâi

†âi*âıj
†âıj*. An efficient algorithm for

solving this Lagrangian for the optimalt andλ amplitudes and
variationally minimizing the energy with respect to the orbitals
has been discussed previously,25 so we will not repeat all of
the details here. Instead, we will focus only on the key steps
and changes introduced by generalizing to unrestricted systems
and the adaptation of the RI approximation. The interested reader
is referred to ref 25 for further detail.

B. Initial Guess. We start the unrestricted PP (UPP)
calculation from either a restricted (RHF or ROHF) or unre-
stricted (UHF) Hartree-Fock wave function. In the restricted
cases, the occupied pairs are formed from electrons sharing a
valence spatial orbital. In the unrestricted case, we identify the
pair space using the corresponding orbital transformation to
maximize the overlap of each alpha orbital with one beta orbital.
The corresponding orbitals are formed by diagonalizing the
alpha-beta spatial orbital overlap matrix,Dij

Râ ) 〈φi
R|φj

â〉, via
the singular value decomposition

whereSis the atomic basis overlap matrix. Given the orthogonal
transformationsU and V, the corresponding orbitalsC̃ are
obtained as

To ensure the selection of valence orbitals for the active space,
the corresponding orbital transformation is performed separately
in the core and active spaces. In all cases, the orbitals are then
localized separately in each subspace. The localized alpha and
beta orbitals are paired by maximum overlap. These alpha-
beta occupied pair orbitals are then paired with virtual orbitals
by maximizing the exchange overlap of the virtual with each
occupied according to the procedure proposed by Sano.26 The
Sano algorithm is used separately for the alpha and beta
components of each occupied pair and may draw in parts of
the HF SUMO in forming the pairs. As described above, alpha

|Ψ〉 ) |A[φ1φ1hφ2φ2h...g1g2...]〉 (1)

gi ) A[ψiψ ij + tiψi*ψ ij*] (2)

|ΨPP〉 ) eT̂PP|Φ0〉 (3)

T̂PP) ∑
i

pairs

ti ıj
i/ ıj/âi/

† âiâıj*
† âıj ) ∑

i

pairs

tiâi/
† âiâıj*

† âıj (4)

LPP) 〈Φ0|(1 + Λ̂PP)e
-T̂PPĤeT̂PP|Φ0〉 (5)

DRâ ) (CR)†SCâ ) UΣV† (6)

C̃R ) CRU C̃â ) CâV (7)
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SOMOs are not paired in any fashion and comprise a third alpha
occupied subspace, leading to core, active, and inactive SOMO
subspaces.

C. Unrestricted Energy Evaluation and Orbital Optimiza-
tion. For a given set of orbitals, the correlation energy is
determined by a linear number oft amplitudes according to

In effect, this means we treat unpaired, excess alpha electrons
in a UHF fashion while correlating all of the valence electron
pairs. The advantage of the PP model not shared by any of
the more complicated coupled cluster methods described
above3,5,15,16,27,28is that the amplitude equations completely
decouple, allowing for the analytical solution of each amplitude
via the solution of a quadratic equation (choosing the root that
gives the lowest energy):

where

In this notation, thefpp are diagonal elements of the fock matrix
fpq ) hpq + ∑j

occ 〈pj|qj〉 - 〈pj|jq〉 and〈pq|rs〉 ) ∫dr1 dr2 φp(r1)
φq(r2)(1/r12) φr(r1) φs(r2). The λ amplitudes are also trivially
obtainable as

Thus, the energy and amplitudes can be obtained with only a
linear number of molecular orbital (MO) basis two-electron
integrals.

Having obtained thet andλ amplitudes, the coupled cluster
Lagrangian can be written down according to eq 5, as presented
in Table 1. Differentiating this Lagrangian with respect to a
rotation,∆q

p, between orbitalsp andq gives

whereCµ
p is the molecular orbital coefficient for atomic orbital

µ in molecular orbitalp. To compute the gradient with respect
to orbital rotations, we therefore need only the partial derivatives
of the Lagrangian with respect to the molecular orbital coef-
ficients, which requires a partial set of two-center integrals. For
the unrestricted case, these derivatives must be evaluated
separately for rotations in the alpha and beta subspaces. These

derivatives are also listed in Table 1. Convergence of the orbital
optimization procedure is enhanced by utilizing diagonal second
derivatives in the geometric direct minimization (GDM) pro-
cedure.29 In the interest of brevity, these second derivatives are
not presented here. Computationally, they require additional two-
center integrals of the forms〈pq|pq〉 and〈pq|qp〉, wherep is in
the occupied or active virtual spaces andq is any orbital.
Because of the simple structure of the PP equations, computing
the energy, amplitudes, and orbital derivatives is trivial com-
pared to the time necessary to compute and transform the
integrals. Thus, in the next section, we outline an efficient
approach for computing the requisite molecular integrals utiliz-
ing the resolution of the identity approximation.

D. Resolution of the Identity Approximation. The primary
algorithmic difference between the closed-shell PP code de-
scribed previously25 and the implementation here is the adapta-
tion of the resolution of the identity (RI) or density-fitting
approximation. In this approximation, a larger, higher angular
momentum auxiliary basis set,{|K)}, is used to expand products
of two Gaussian basis functions that typically occur in two-
electron integrals

In this notation,µ, ν, ... refer to atomic orbitals (AOs),K, L, ...
refer to auxiliary basis functions,i, j, ... refer to occupied
molecular orbitals (MOs), anda, b, ... refer to virtual MOs.
The fitting coefficients,Aµν

K , are given by

A typical two-electron integral (µν|λσ) ) ∫dr1 dr2 φµ(r1) φν-
(r1)(1/r12) φλ(r2) φσ(r2) takes the form

whereBµν
M ) ∑K

aux (µν|K)(K|M)-1/2.
Although there are typically several times as many auxiliary

basis functions,{|K)}, as there are primary AO basis functions,

TABLE 1: Unrestricted Perfect Pairing Lagrangian and Its Orbital Derivatives

LPP) Eref + ∑i
pairsλiti(fi* i* + fıj* ıj* - fii - fıjıj) + ∑i

pairs (ti + λi - λiti2)〈iıj|i* ıj* 〉 + ∑i
pairsλiti(〈iıj|iıj〉 + 〈i* ıj* |i* ıj* 〉 + 〈ii* |i* i〉 - 〈ii* |ii* 〉 + 〈ıjıj* |ıj* ıj〉 -

〈ıjıj* |ıjıj* 〉 - 〈iıj* |iıj* 〉 - 〈ıji* |ıji* 〉)
orbital gradient (dL/d∆q

p) ) Σµ [(∂L/∂Cµ
p)Cµ

q - (∂L/∂Cµ
q)Cµ

p]

l ∈ inact. occ. (∂L/∂Cµ
l ) ) 2fµl - ∑i

pairs2λiti(〈iµ|il 〉 - 〈iµ|li 〉 + 〈ıjµ|ıjl〉 - 〈i*µ|i* l〉 + 〈i*µ|li* 〉 - 〈ıj*µ|ıj* l〉)
k ∈ act. occ. (∂L/∂Cµ

k) ) -∑i
pairs2λiti(〈iµ|ik〉 - 〈iµ|ki〉 + 〈ıjµ|ıjk〉 - 〈i*µ|i*k〉 + 〈i*µ|ki* 〉 - 〈ıj*µ|ıj*k〉) + (2 - 2λktk)fµk + (tk + λk - λktk2)〈µkh|k*kh* 〉 +

2λktk(〈µkh|kkh〉 + 〈µk* |k*k〉 - 〈µk* |kk* 〉 - 〈µkh* |kkh* 〉)
k* ∈ act. virt. (∂L/∂Cµ

k/) ) 2λktkfµk* + (tk + λk - λktk2)〈kkh|µkh* 〉 + 2λktk(〈µkh* |k*kh* 〉 + 〈kµ|k*k〉 - 〈kµ|kk* 〉 - 〈khµ|khk* 〉)
l* ∈ inact. virt. (∂L/∂Cµ

l*) ) 0

EPP) Eref + ∑
i

pairs

ti〈i ıj|i* ıj* 〉 (8)

〈i ıj|i* ıj* 〉 + Witi - 〈i ıj|i* ıj* 〉ti
2 ) 0 (9)

Wi ) fi* i* + fıj* ıj* - fii - fıj ıj + 〈i ıj|i ıj〉 + 〈i* ıj* |i* ıj* 〉 +
〈ii* |i* i〉 - 〈ii* |ii* 〉 + 〈 ıj ıj* |ı* ıj - 〈 ıj ıj* | ıj ıj* 〉 - 〈i ıj* |i ıj* 〉 -

〈 ıji* | ıji* 〉 (10)

λi ) -
〈i ıj|i* ıj* 〉

Wi - 2ti〈i ıj|i* ıj* 〉
(11)

dL

d∆q
p

) ∑
µ ( ∂L

∂Cµ
p
Cµ

q -
∂L

∂Cµ
q
Cµ

p) (12)

|F) ) |µν) ≈ |µν) ) ∑
K

aux

Aµν
K |K) (13)

Aµν
K ) ∑

L

aux

(µν|L)(L|K)-1 (14)

(µν|λσ) ≈

(µν|λσ) ) ∑
KLMN

aux

(µν|K)(K|L)-1(L|M)(M|N)-1(N|λσ) (15)

) ∑
KL

aux

(µν|K)(K|L)-1(L|λσ) (16)

) ∑
KLM

aux

[(µν|K)(K|M)-1/2][(M|L)-1/2(L|λσ)] (17)

) ∑
M

aux

Bµν
M Bλσ

M (18)
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the approximation requires only three-center integrals to be built
via explicit integration, and the final four-center integrals are
formed as matrix multiplications of theBµν

K matrices. It also
facilitates the development of cubic disk storage algorithms,
since all two-electron integrals can be formed as needed from
the Bµν

K matrices.

The details of our algorithm will be presented elsewhere, but
the basic procedure is as follows. Following the approach
outlined in ref 25, we wish to construct half-transformed
Coulomb- and exchangelike matrices

and then transform the final two AO indices. In this case, the
half-transformed integrals are constructed in an RI fashion. That
is, we do the following:

(1) We form (M|L)-1/2 and (µν|M). We contract to formBµν
L

) ∑M (µν|M)(M|L)-1/2. This needs to be done only once, and
the resulting AO basisBµν

L can be stored on disk. All subse-
quent steps must be updated for each iteration.

(2) We transform the first AO indexµ to the MO basis for
orbitals i and i*, for example,Biν

L ) ∑µ CµiBµν
L .

(3) We formKµν
[ii ] ) ∑L Biµ

L Biν
L , along withKµν

[ii*] andKµν
[i* i*] .

(4) We transform the second AO index to the MO basis, for
example,Bii*

L ) ∑µ Cνi*Biν
L .

(5) We formJµν
[ii ] ) ∑L Bii

LBµν
L , along withJµν

[ii*] andJµν
[i* i*] .

(6) We transform the final to AO indices to formJpp
[ii ], Kpp

[ii ],
and so forth, wherep is any MO. Alternatively, we form the
necessary three-quarter-transformed integrals used in the orbital
derivatives listed in Table 1.

All steps in this procedure, including the final formation of
the half-transformed integrals, are performed in batches to
maintain quadratic memory. This procedure generates all of the
integrals necessary to compute the energy, the first orbital
derivatives, and the diagonal second orbital derivatives. Finally,
note that the Sano initial guess algorithm requires the formation
of many exchange matrices,Kµν

[ii ], which is also performed
using the RI approximation as described above.

Overall, this algorithm is quartic, albeit with a small prefactor,
requires a cubic amount of disk storage, and has quadratic
memory requirements. Calculations on 50 carbon linear alkanes
in the cc-pVDZ basis (more than 1200 basis functions in the
primary basis)30 are quite feasible on a modern personal
computer. Further details on the algorithm, timings, and errors
introduced by the RI approximation are beyond the scope of
this paper and will be addressed elsewhere.31

E. Nuclear Gradient. An efficient algorithm for nuclear
gradients allows molecular geometries to be computed at the
UPP level. Because the Lagrangian has been variationally
minimized during the energy calculation, the Hellmann-
Feynman theorem permits an equation for its gradient to be
obtained trivially. If the superscript “(x)” indicates partial
differentiation with respect to nuclear displacement, then the
Lagrangian becomes

Although the PP wave function is stable with respect to
infinitesimal changes in the nuclear positions, the MO coef-
ficients must vary to ensure that the orbitals remain orthogonal
when the (atom-centered) basis functions are moved. Dif-
ferentiating the MO coefficients implicit in eq 22 yields a term
in which an energy weighted density matrix,W, contracts with
the overlap derivatives.32,33

Our strategy for evaluating the two-electron gradients ef-
ficiently is the same as before.25 Half-transformed coulomb and
exchange matrices are contracted with the set of effective density
matrices listed in Table 4. Note that the effective density
matrices used in ref 25 have been redefined to accommodate
the unrestriction. The resulting expression for the gradient is

where the superscript “(x̃)” indicates partial differentiation of
the one- and two-electron integrals but not the MO coefficients.

The time necessary to compute these derivatives is compa-
rable to that required for a single point energy evaluation.
Batching the formation of the derivative matrices enables the
gradient to be computed with only quadratic memory use. The
speed of the gradient calculation is improved further by an RI
implementation which will be described elsewhere.31

F. Orbital Optimization Convergence. In typical closed-
shell organic molecules (i.e., those with single bonds connecting
the atoms) near their equilibrium structures, the PP algorithm
described here and in ref 25 converges within 10-30 iterations,
which is comparable to the convergence rate of HF. However,
in more complicated cases such as radicals, the convergence is
much slower and can take hundreds of iterations (though with
GDM it always converges eventually). Moreover, just as
different initial guesses often lead to different SCF solutions in
more challenging species, we often find multiple PP solutions
depending on the initial localization scheme used. In general,
Pipek-Mezey orbitals34 provide the fastest convergence, but
sometimes the Boys orbitals35 lead to lower energy solutions.

To use PP widely, it might be helpful to adapt Pulay’s direct
inversion of the iterative subspace (DIIS) to the PP problem36,37

to provide an alternative convergence scheme that could be faster
when starting far away from the orbital minimum. An imple-
mentation of complete orbital second derivatives to allow for
stability analysis on converged stationary points in certain cases
might also be helpful. Perhaps other initial guesses than the
Sano guess from HF orbitals could be devised as well.
Nevertheless, we were able to converge every molecule and
made a serious effort (by varying the initial guess) to ensure

Jµν
[ii ] ) 〈iµ|iν〉 ) (ii |µν) Kµν

[ii ] ) 〈iµ|νi〉 ) (iµ|iν) (19)

Jµν
[ii*] ) 〈iµ|i*ν〉 ) (ii* |µν) Kµν

[ii*] ) 〈iµ|νi* 〉 ) (iµ|i*ν) (20)

Jµν
[i* i*] ) 〈i*µ|i*ν〉 ) (i* i* |µν)

Kµν
[i* i*] ) 〈i*µ|νi* 〉 ) (i*µ|i*ν)

(21)

LPP
(x) ) Eref

(x) + ∑
i

pairs

λtti(f i* i*
(x) + f ıj* ıj*

(x) - f ii
(x) - f ıj ıj

(x)) +

∑
i

pairs

(ti + λi - λiti
2)〈i ıj|i* ıj* 〉(x) + ∑

i

pairs

λiti(〈i ıj|i ıj〉(x) +

〈i* ıj* |i* ıj* 〉(x) + 〈ii* |i* i〉(x) - 〈ii* |ii* 〉(x) + 〈 ıj ıj* | ıj* ıj〉(x) -
〈 ıj ıj* | ıj ıj* 〉(x) - 〈i ıj* |i ıj* 〉(x) - 〈 ıji* | ıji* 〉(x)) (22)

LPP
(x) ) Eref

(x̃) + ∑
i

pairs

λiti(f i* i*
(x̃) + f ıj* ıj*

(x̃) - f ii
(x̃) - f ıj ıj

(x̃)) +

∑
i

pairs

∑
µν

(Pµν
[ii ]Jµν

[ii ](x) + Pµν
[ ıj ıj]Jµν

[ ıj ıj](x) - Qµν
[ii ]Kµν

[ii ](x) - Qµν
[ ıj ıj]Kµν

[ ıj ıj](x) +

Pµν
[ii*]Jµν

[ii*]( x) + Pµν
[ ıj ıj*]Jµν

[ ıj ıj*]( x) + Pµν
[i* i*]Jµν

[i* i*]( x) + Pµν
[ ıj* ıj*]Jµν

[ ıj* ıj*]( x) -

Qµν
[i* i*]Kµν

[i* i*]( x) - Qµν
[ ıj* ıj*]Kµν

[ ıj* ıj*]( x) + ∑
µν

Wµν Sµν
(x)) (23)
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that the variationally lowest energy solution was found for all
of the results reported herein.

III. Results and Discussion

The RI-PP algorithm for open- and closed-shell systems has
been implemented in a developmental version of Q-Chem, and
all calculations herein were performed using Q-Chem.38 Unless
otherwise specified, all PP calculations use the RI approximation
with the auxiliary basis sets developed for RIMP2/cc-pVXZ
calculations,30,39 and all valence orbitals were correlated. The
active spaces in VOD always match those used in PP, with one
correlating orbital for each pair of valence electrons. Further-
more, unless otherwise specified, all calculations were spin
unrestricted and break symmetry whenever it lowers the energy.

A. Bond Breaking. To begin, we revisit the bond-breaking
problem in the context of the N2 molecule dissociating into two
quartet-state nitrogen atoms. Figure 1 compares the HF, PP,
and VOD results against FCI results (with the frozen core
approximation)40 in the cc-pVDZ basis. It comes as no surprise
that RHF rises in energy much too quickly and dissociates to a
high asymptote, leading to a potential energy surface (PES) that
is very nonparallel to the FCI one. RPP is significantly more
parallel to FCI than RHF and does not exhibit the nonvariational
collapse associated with standard restricted MP2 or coupled
cluster doubles methods. For example, restricted VOD turns over
around 1.75 Å. However, this parallelism of RPP does come at
a cost: the dissociation limit is still too high as compared to a
PP description of the atoms. Unrestricting enables the wave
function to reach localized atomic limits, with the alpha electron
in a bonding pair localizing to one atom and the beta electron
to the other.

As we dissociate, the five valence pairs (oneσ bond, twoπ
bonds, and two lone pairs at equilibrium) should asymptote to
two equivalent 2s pairs with nonzero correlation energy
contribution and three amplitudes with magnitude zero corre-
sponding to the nonexistent interaction between the three alpha
unpaired 2p electrons on one N atom and the three beta unpaired
2p electrons on the other atom at infinite separation. However,
because the PP orbitals are variationally optimized and we are
considering five pairs, the energy can be lowered by correlating
the 1s core electrons together or with the unpaired 2p electrons.
Though the correlation energy contributions from these interac-
tions are small, they are nonzero. This means that the wave
function will change character discontinuously on the way to

dissociation unless either all electrons are made active or the
core electrons are not allowed to mix with the valence ones.

Note, however, that this issue of the variationally best active
space changing qualitatively across the potential energy surface
is in principle present in all variationally orbital-optimized active
space methods, such as VOD or CASSCF. Of course, the more
interpair correlations present in the model and/or the larger the
active space, the less likely that “core” orbitals will be drawn
into the active space. In N2, for example, a more complete
treatment of the correlations would correlate the unpaired
electrons in a quartet nitrogen atom, thereby obviating core
electron correlations.

In this case, given the relative unimportance of the core 1s
electrons on each nitrogen atom, we have frozen those orbitals
(based on their HF definitions) and prevented them from mixing

TABLE 2: Derivative Matrices and Effective Density
Matrices Used for Computing the Nuclear Gradient for the
Unrestricted Perfect Pairing Lagrangian (For the Coulomb
and Exchange Derivative Matrices, Differentiation Has Been
Intentionally Limited to the External Indices)

Jµν
[ii ](x) ) 〈iµ(x)|iν〉 + 〈iµ|iν(x)〉

Kµν
[ii ](x) ) 〈iµ(x)|νi〉 + 〈iµ|ν(x)i〉

Jµν
[ii*]( x) ) 〈iµ(x)|i* ν〉 + 〈iµ|i* ν(x)〉

Kµν
[ii*]( x) ) 〈iµ(x)|νi* 〉 + 〈iµ|ν(x)i* 〉

Jµν
[i* i*]( x) ) 〈i*µ(x)|i* ν〉 + 〈i* µ|i* ν(x)〉

Kµν
[i* i*]( x) ) 〈i* µ(x)|i* ν〉 + 〈i* µ|i* ν(x)〉

Pµν
[ii ] ) λiti(CµiCνi - Cµi*Cνi* - Cµıj*Cνıj*)

Qµν
[ii ] ) λitiCµi*Cνi*

Pµν
[ii*] ) (λi + ti - λiti2)CµıjCνıj*

Pµν
[i* i*] ) λiti(Cµıj*Cνıj* - CµiCνi - CµıjCvib)

Qµν
[i* i*] ) λiti(CµiCνi

Wµν
R ) -1/2∑i,j

occ,actR ∑σ Cµi(∂L/∂Cσi)CσjCjν
T

TABLE 3: Errors in Predicted Bond Lengths (in Å) versus
Experiment in the 6-311G** Basis for Various Small,
Closed-Shell Molecules (All Methods Are Unrestricted, and
the RI Approximation Was Not Used for PP)

expta HF PP VOD B3LYP

C2H2 rCH 1.063 -0.008 0.008 0.013 0.000
rCC 1.203 -0.020 -0.001 0.014 -0.005

C2H4 rCH 1.081 -0.004 0.013 0.019 0.004
rCC 1.334 -0.018 0.011 0.015 -0.007

1CH2 rCH 1.107 -0.022 -0.002 0.023 -0.010
CH4 rCH 1.086 -0.002 0.018 0.019 0.005
Cl2 rClCl 1.988 0.015 0.095 0.016 0.069
ClF rClF 1.628 -0.009 0.091 0.041 0.051
CO rCO 1.128 -0.023 -0.010 0.002 -0.001
CO2 rCO 1.160 -0.025 -0.014 0.001 0.000
CS rCS 1.535 -0.019 -0.007 0.004 0.007
F2 rFF 1.412 b 0.131 0.008 -0.005
H2 rHH 0.741 -0.006 0.015 0.015 0.001
H2CO rCH 1.116 -0.021 -0.009 0.003 -0.006

rCO 1.208 -0.029 0.002 0.000 -0.008
H2CS rCH 1.093 -0.015 0.003 0.009 -0.004

rCS 1.611 0.017 0.021 0.013 0.005
H2O rOH 0.957 -0.016 0.002 0.004 0.005
H2O2 rOH 0.965 -0.023 -0.003 0.001 -0.003

rOO 1.452 -0.059 0.043 0.004 0.009
H2S2 rSH 1.345 -0.016 0.007 0.000 0.002

rSS 2.058 0.066 0.125 0.073 0.116
HCN rCH 1.065 -0.007 0.007 0.013 0.002

rCN 1.153 -0.026 -0.002 0.008 -0.005
HCP rCH 1.069 -0.004 0.011 0.017 0.004

rCP 1.540 0.019 0.009 0.016 0.000
HF rHF 0.917 -0.021 -0.003 -0.002 0.005
HNC rNH 0.994 -0.010 0.004 0.011 0.006

rNC 1.169 -0.020 -0.005 0.007 -0.001
HNO rHN 1.063 -0.037 -0.016 0.001 -0.002

rNO 1.212 -0.021 0.001 -0.003 -0.009
HOCl rOH 0.975 -0.031 -0.011 -0.008 -0.007

rOCl 1.690 -0.017 0.085 0.036 0.047
HOF rOH 0.966 -0.020 0.000 0.004 0.005

rOF 1.442 -0.080 0.046 -0.014 -0.008
Li2 rLiLi 2.673 0.257 0.016 0.016 0.032
N2 rNN 1.098 -0.028 -0.002 0.006 -0.003
N2H2 rNH 1.028 -0.015 0.003 0.012 0.007

rNN 1.252 -0.040 -0.003 0.002 -0.011
NaF rNaF 1.926 -0.014 -0.008 0.003 -0.009
NH3 rNH 1.012 -0.011 0.008 0.010 0.003
NNO rNN 1.127 -0.042 -0.024 -0.003 -0.001

rNO 1.185 -0.016 0.017 0.012 -0.001
NP rNP 1.491 0.038 0.005 0.007 -0.002
NSF rNS 1.448 -0.023 -0.011 -0.001 0.003

rSF 1.643 -0.017 0.016 0.060 0.069
P2 rPP 1.893 0.072 0.018 0.020 0.004
SO2 rSO 1.485 -0.078 -0.066 -0.041 -0.027
SO3 rSO 1.420 -0.024 -0.013 0.011 0.026

median error:c -0.017 0.004 0.009 0.000
rms error:c 0.048 0.033 0.020 0.026

a Reference.b Unbound.c Excludes F2.
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with the active orbitals in PP and VOD. The FCI data also
employ the frozen core approximation. Freezing the core orbitals
in PP instead of leaving them as inactive provides a minimal
energetic penalty (less than 0.1 kcal/mol across the regime
examined here) and ensures that our pairs remain valence in
nature.

Looking at the UPP curve, we see both that the unrestriction
occurs noticeably later than that for the UHF curve and that

the difference between the restricted and unrestricted solutions
is much less significant at the PP level. Not too surprisingly,
VOD maintains spin symmetry even further away from equi-
librium due to its more complete description of the correla-
tions.41 Notice too that UHF overshoots the atomic limits and
has turned over slightly by 2.0 Å. In contrast, UPP and UVOD
rise monotonically toward the dissociation limit for N2. Because
there is less correlation energy in the separate atoms than the
molecule, the asymptotic limits of UHF, UPP, and UVOD are
all much closer in energy than at the equilibrium geometry. This
leads to an increased nonparallelity error versus FCI which, in
the case of UPP, is worse than RPP. Nevertheless, UPP is much
more parallel than UHF, and its correct asymptotic behavior of
UPP should be helpful in combination with the inclusion of
dynamical correlation effects. Overall, UPP captures much of
the energetic benefit of UVOD at a much lower cost.

The issue of unusual unrestricted pairing leads to especially
odd behavior in F2+. Unlike UHF in the 6-31G* basis, which
predicts that F2+ is unbound, UPP successfully predicts F2

+ to
be bound, though by only 17 kcal/mol (versus 48 kcal/mol at
the VOD level). The PP PES minimum and curvature are also
somewhat in error, leading to an erroneous bond length and
harmonic frequency, as will be discussed below. More impor-
tantly in the current context, as the bond is stretched to about
1.8 Å, the standard ground state

crosses with an excited state with configuration

This second state is bound by about 9 kcal/mol at its optimal
bond length of 2.01 Å. Thus, the adiabatic ground state has a
second, unphysical minimum. This second state crosses the
ground state when it becomes energetically favorable to form a
pair with (σgâ)(σu

/R) instead of the conventional (σg)2 pair.
Fortunately, F2+ seems to be an unusually severe case, and
problems of this extent have not been observed in other systems.
Of course, in the broader context, where UHF does not even
predict a bound state in this and many other basis sets, this
failure on the part of PP 0.4 Å from equilibrium is more
palatable.

B. Geometries of Open- and Closed-Shell Species.Because
molecular geometries generally do not depend too much on the
description of the correlation energy, one of the best uses for
HF is molecular structure prediction. However, it is known that
the absence of correlation typically leads HF to underestimate
bond lengths. To this end, we wish to know to what extent
including a limited description of pair correlations improves
these structures. Therefore, we assess the reliability of PP in
predicting open- and closed-shell geometries. We shall consider
the two types of molecules separately in the 6-311G** basis.
In this particular instance, we did not utilize the RI approxima-
tion for PP, though it introduces only tiny errors into the
predicted structures (typically on the order of 10-3-10-4 Å).
In all cases, unrestricted wave functions were used and
symmetry was broken whenever possible. Unrestricted B3LYP
results are presented as well, since it is probably the most widely
used method for molecular structure determination.

We consider first a group of closed-shell species containing
first- and second-row atoms. The test set consists of 34
molecules containing 49 unique bond lengths and contains most
of the species examined in refs 42 and 43 along with others

TABLE 4: Errors in Predicted Bond Lengths (in Å) versus
Experiment in the 6-311G** Basis for Various Small,
Doublet- and Triplet-State Molecules (All Methods Are
Unrestricted, and the RI Approximation Was Not Used for
PP)

expta HF PP VOD B3LYP

BeF rBeF 1.361 0.003 0.011 0.022 0.011
BeH rBeH 1.343 0.000 0.025 0.025 0.000
BH+ rBH 1.215 -0.027 -0.006 -0.009 -0.010
BH2 rBH 1.181 0.004 0.026 0.028 0.007
BN rBN 1.281 0.007 0.029 0.046 0.038
BO rBO 1.205 -0.024 -0.011 0.002 -0.003
C2

+ rCC 1.301 0.101 0.000 0.007 0.100
CF rCF 1.272 -0.015 0.013 0.009 0.007
CH rCH 1.120 -0.017 0.014 0.018 0.008
3CH2 rCH 1.078 -0.006 0.012 0.016 0.002
CH2 rCH 1.079 -0.006 0.011 0.013 0.001
CN rCN 1.172 -0.018 -0.006 0.005 -0.006
CO+ rCO 1.115 -0.027 -0.013 0.000 -0.005
F2

+ rFF 1.322 b 0.129 -0.022 -0.023
FH+ rFH 1.001 -0.023 -0.006 -0.001 0.008
HCO rHC 1.125 -0.016 -0.004 0.011 0.002

rCO 1.175 -0.023 -0.002 0.005 -0.001
HNF rHN 1.060 -0.047 -0.026 -0.020 -0.024

rNF 1.370 -0.036 0.016 0.010 0.002
HO2 rOH 0.977 -0.030 -0.013 -0.004 -0.002

rOO 1.335 -0.036 0.023 0.002 -0.007
N2

+ rNN 1.116 -0.008 0.006 0.006 -0.007
NF rNF 1.317 -0.026 0.016 0.011 0.001
NH+ rNH 1.070 -0.016 0.003 0.006 0.010
NH rNH 1.036 -0.013 0.010 0.014 0.009
NH2 rNH 1.024 -0.012 0.008 0.013 0.007
NO rNO 1.151 -0.034 -0.008 0.002 -0.003
O2

+ rOO 1.116 -0.055 -0.019 -0.006 -0.010
O2 rOO 1.208 -0.051 -0.033 -0.003 -0.002
OH+ rOH 1.028 -0.021 0.000 0.003 0.009
OH rOH 0.970 -0.018 0.001 0.004 0.006
OH2

+ rOH 0.999 -0.019 -0.001 0.005 0.007
median error:c -0.018 0.001 0.006 0.002

rms error:c 0.031 0.015 0.014 0.021
rms doublets:c 0.032 0.013 0.012 0.021
rms triplets:c 0.026 0.020 0.021 0.016

a Reference.b Unbound.c Excludes F2+.

Figure 1. Restricted (solid lines) and unrestricted (dashed lines) N2

bond breaking in the cc-pVDZ basis. The correlated methods employ
a frozen core approximation, and the FCI results were obtained from
ref 57.
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found in refs 44-47. The errors are presented in Table 3 and
pictorially using box plots in Figure 2. These plots mark the
median error with a white line inside the black box. The box
then extends to include the central 50% of the data. The whiskers
extend to include any data within a range extending up to 1.5
times the size of the box in each direction, and points lying
beyond this range are denoted as outliers and are marked
separately.

Looking at Figure 2, we see that, as expected, including some
correlation tends to lengthen bonds slightly on average, shifting
the median error (excluding F2, for which HF is unbound, as
discussed below) from-0.017 Å for HF to 0.004 Å for PP,
0.009 Å for VOD, and 0.000 Å for B3LYP. Indeed, the limited
correlation in PP helps to correct for the underestimated bond
lengths in HF. Also, the PP, VOD, and B3LYP root-mean-
square (rms) errors of 0.033, 0.020, and 0.026 Å are noticeably
improved over HF (0.048 Å). The largest improvements over
HF with the correlated methods is observed for Li2, which goes
from 0.26 Å too long to 0.016 Å in error with PP or VOD, and
F2, which is not even bound at the HF level. Unfortunately, as
observed previously,42,43,48PP predicts much too long of a bond
length for F2 and other halogenated species, for which interpair
correlations are important. Many of the species for which PP
has the most difficultysH2S2 (∆rSS) 0.125 Å), Cl2 (0.095 Å),
ClF (0.091 Å), and HOCl (∆rOCl ) 0.085 Å)sare also
problematic for VOD and B3LYP. In general, however, if one
does not use PP on halogenated species, it predicts the
geometries of these closed-shell species very reasonably, with
only slightly larger errors than VOD. Although B3LYP is in
general slightly more accurate than VOD for these structures,
it exhibits some significant outliers that err more than their VOD
counterparts.

One might expect that PP would have trouble in hypervalent
species, for which the electron pairing is perhaps more
complicated than in standard octet-rule-obeying structures. The
test set includes three hypervalent species: NSF, SO2, and SO3.
PP clearly makes improvements over HF on these species, and
its geometry predictions for these species are not particularly
worse than those for the other species. On the other hand, we
have not tested PP in systems such as transition-metal complexes
which exhibit even more complicated bonding patterns.

Unrestricted PP also performs well for open-shell molecules.
Table 4 and Figure 3 present UHF, UPP, UVOD, and UB3LYP
results for 29 diatomic and triatomic open-shell species contain-
ing 32 unique bonds.49 Most of these species have doublet

ground states, but BN,3CH2, NF, NH, O2, and OH+ exhibit
triplet ground states. Overall, if we exclude F2

+ (which UHF
predicts to be unbound), PP reduces the rms error for the open-
shelled species from 0.031 Å at the HF level to 0.015 Å.
Furthermore, PP is statistically on par with VOD, which has
an rms error of 0.014 Å, though for any given species the results
differ moderately. The PP and VOD geometries are also slightly
improved over B3LYP, which has an rms error of 0.021 Å. As
in the closed-shell species, the inclusion of static correlation
increases the bond lengths versus HF and brings the median
error closer to zero.

The largest improvements PP provides over HF are for C2
+

and for F2
+, for which UHF predicts no binding due to severe

symmetry-breaking effects. On the other hand, F2
+ is the only

significant outlier in this data set for PP, with an error of 0.13
Å. This is not too surprising, however, since F2

+, like F2,
requires a description of interpair correlations to be reliable.43,48

The fact that VOD has no trouble with F2
+ substantiates this

reasoning. In any case, the fact that PP binds F2
+ at all, unlike

HF, is a notable success, even if the bond length is 10% too
long.

Combining these two data sets, we see that overall PP predicts
fairly reliable geometries for open- and closed-shell systems
(typically accurate to within 0.01 Å) with some improvement
over HF at a much lower cost than VOD. However, the limited
description of correlation effects in PP is likely to cause trouble
in systems with halogen atoms, multiple resonance structures,
or other odd bonding patterns. In those cases, a more complete
treatment of valence correlation that does not bias so strongly
in favor of individual electron pairs is necessary.48 For typical
systems, of course, B3LYP generally remains as accurate or
better than VOD or PP. In complicated systems with very strong
static correlation effects, however, density functional theory can
fail miserably, and an inexpensive alternative like PP for
structure prediction can be very useful.

C. Radicals and Symmetry Breaking.Symmetry-breaking
effects in radicals are known to produce spurious potential
energy surfaces and properties. In the worst-case scenarios, such
as F2

+, UHF is unbound in certain basis sets (6-31G*, for
example). Even if they are bound, symmetry breaking leads to
asymmetric electronic spin distributions, anomalous vibrational
frequencies, and so forth. Byrd and co-workers demonstrated
that standard methods such as MP2 and CCSD(T) performed
far below their standard, closed-shell system levels of accuracy
on the geometries and vibrational frequencies of various small

Figure 2. Errors in 6-311G** predicted bond lengths versus experiment
for a set of small, closed-shell molecules.

Figure 3. Errors in 6-311G** predicted bond lengths versus experiment
for a set of small, doublet- and triplet-state open-shell molecules. Note
that HF excludes F2+, since it is unbound.
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radicals.50 It was later demonstrated that these problems are
primarily linked to spin and spatial symmetry-breaking effects
in the underlying HF reference and that property predictions
are substantially improved by improving upon the HF refer-
ence.51 In particular, this latter study demonstrated that methods
such as orbital-optimized coupled cluster doubles with pertur-
bative triples (OD(T)) or KS-CCSD(T), which uses Kohn-Sham
orbitals as a more stable reference than the HF ones, predicted
vibrational frequencies of small diatomic radicals faithfully
compared to experiment. In both cases, the new reference
determinants are far more stable against symmetry breaking.

Unfortunately, even KS-CCSD(T) is much too computation-
ally expensive for applicability in systems beyond a few atoms,
so it is desirable to explore to what extent the limited correlations
included in PP can overcome these problems. With this in mind,
we revisit the set of 12 diatomic radicals studied in ref 51 using
unrestricted HF, PP, and VOD in the cc-pVTZ basis (and the
auxiliary basis set for cc-pVTZ in the PP case). These results
are presented in Table 5. We see that, for these species, HF is
typically 50-600 cm-1 in error in this basis set, with the worst
cases percentagewise being F2

+ (43%), O2
+ (32%), NO (17%),

and OF and N2+ (15%). The UPP model, on the other hand,
systematically improves virtually every one of these frequencies.

Some of the most difficult cases from previous studies are
the isoelectronic pairs CO+, CN, and N2

+, which suffer from
severe spin contamination, O2

+ and NO, and F2+ and OF, all
of which suffer from spatial symmetry breaking or rapid changes
in the wave function for small displacements in the nuclei (for
NO and OF, which technically do not have left-right sym-

metry). This explains the inclusion of most of these in the list
above of the worst percentage errors at the HF level. In all of
these cases except for F2

+ and OF, PP predicts significantly
more reasonable frequencies, dropping the percentage errors
below 10%. In most cases, PP even recovers the majority of
the improvement offered by VOD (see particularly CH, OH,
CN, CF, NO, and O2+), which makes no local approximation.

The worst frequencies (as compared against experiment
percentagewise) at the PP level are for BO (6%), CO+ (9%),
O2

+ (8%), OF (22%), and F2+ (34%). The first three of these
are all noticeably better than UHF and all correspond to systems
with sizable spin contamination at the UHF level. Table 4 lists
all of the radicals from this set with UHF〈S2〉 values greater
than 0.77. For these doublet radicals, the exact ground state
should have〈S2〉 ) 0.75. From this table, we see that UPP
usually somewhat decreases the degree of spin contamination,
as indicated by the lower〈S2〉 values, particularly for the most
spin-contaminated cases of CN, CO+, and N2

+. For all of the
diatomics not listed in Table 4, UPP does reduce the spin
contamination, but it is already relatively minor at the UHF
level and the improvement provided by UPP is not particularly
significant. The sizable improvement in spin contamination helps
to explain the improvement in the computed frequencies for a
number of species, particularly for BO, CN, CO+, and N2

+.
These effects would become even more pronounced if dynamical
correlation were included.

OF and F2+ are unique in that PP gives slightly larger
reference〈S2〉 values. Those two also stood out in their frequency
predictions, with each being hundreds of wavenumbers in error.
Furthermore, the OF frequency is actually worse at the UPP
level than at the UHF level, though neither is particularly
accurate. However, the difficulty for these isoelectronic species
is a mixture of their being among the most challenging diatomic
radicals in terms of symmetry breaking with the general
difficulty PP has treating halogens, for which interpair correla-
tions are important.43,48 On the other hand, even if UPP does
not particularly improve upon HF for these frequencies, it is
worth noting once again that, while UHF fails to bind F2

+ in
many basis sets (e.g., 6-31G*52 or 6-311G**, as discussed
above), UPP predicts a bound structure, albeit with only a
qualitatively correct PES near equilibrium.

In summary, UPP substantially improves the predicted
harmonic vibrational frequencies over UHF in these challenging
radicals, cutting the mean absolute percent deviation almost in
half. Though UPP does not perform as well as VOD for these
species, it is much less expensive to compute. The UPP wave
function should then make for a significantly better reference
than the UHF one for treating the dynamical correlation
perturbatively and avoid the pathological frequency predictions
characteristic of MP2 from the UHF reference.

Of course, the simplicity of the PP ansatz dictates that it
perform only moderately compared to more complete correlation
treatments such as VOD. Consider, for example, the allyl radical.
Theπ system contains three electrons delocalized over the three
carbons. This species exhibits the classic competition between
the symmetric, delocalized three-electronπ system with both
carbon-carbon bonds equal in length and the symmetry-broken
wave function that localizes the radical electron on one end of
the molecule and the double bond on the other end. Restricted
open-shell HF (ROHF) favors the symmetry-broken solution,
but UHF actually prefers the symmetric one. The ROHF and
UHF highest occupied molecular orbital (HOMO) and SOMO
orbitals for allyl at the symmetric, UB3LYP/cc-pVDZ-optimized
geometry are plotted in Figure 5. At this point on the PES,

TABLE 5: Errors in Harmonic Vibrational Frequencies (in
cm-1) for Various Diatomic Radicals in the cc-pVTZ Basis
Set as Compared to Experiment

expt. HF PP VOD CCSDa

CH 2858.5d 215 -59 -63 -6
OH 3737.8c 301 -30 -11 -40
FH+ 3090b 233 90 62 76
BO 1886b 195 113 40 44
CN 2068.6c -54 19 31 89
CO+ 2169.8c 239 187 68 124
N2

+ 2207b -326 -81 42 127
CF 1308b 110 -5 -5 39
NO 1904.2c 319 62 62 86
O2

+ 1904.7c 591 153 123 128
OF 1053b 157 -231 6 52
F2

+ 1104d 479 -370 104 123
MAD (%): 14.7 7.7 2.8 4.4

a Reference 51.b Reference 54.c Reference 55.d Reference 56.

TABLE 6: Reference Determinant 〈S2〉 for Various Diatomic
Radicals in the cc-pVTZ Basis Set

HF PP

BO 0.794 0.776
CN 1.076 0.822
CO+ 0.908 0.807
N2

+ 1.163 0.794
OF 0.753 0.760
F2

+ 0.766 0.772

TABLE 7: Charge and Spin Symmetry Mulliken
Populations for the Left and Right Atoms in Selected
Diatomic Radicals in the cc-pVTZ Basis Set

HF PP

charge spin charge spin

N2
+ 0.393/0.606 -0.817/1.817 0.434/0.566 0.130/0.870

O2
+ 0.500/0.500 0.500/0.500 0.498/0.502 0.494/0.506

F2
+ 0.500/0.500 0.500/0.500 0.702/0.298-0.051/1.051
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ROHF orbitals are symmetry-broken, with a slight shift in the
HOMO toward the left carbon atom and the SOMO toward the
right carbon atom. UHF, on the other hand, exhibits perfectly
symmetrical orbitals. Therefore, correlation methods such as
MP2 that rely on the UHF reference will preserve the symmetry.
In contrast, the open-shell PP model described here correlates
the electron pair but treats the radical electron in a UHF-like
fashion. This asymmetry acts as a driving force for the electron
pair to localize and maximally separate itself from the radical
electron, tipping the scales in favor of the symmetry-broken
solution. The UPP orbitals are also plotted in Figure 5, and
although the beta HOMO is delocalized reasonably over the
molecule, the alpha HOMO and SOMO are extremely sym-
metry-broken. As expected, the electron pair localizes to a
carbon-carbon double bond, and the radical electron primarily
occupies the other carbon atom.

A similar picture emerges energetically. Figure 4 plots the
slice of the potential energy surface for deforming the C-C
bond from the UB3LYP/cc-pVDZ-optimized symmetric struc-
ture (rC-C ) 1.386 Å). All other degrees of freedom were held
fixed. By about 0.65 kcal/mol, UPP favors the symmetry-broken
structure with one C-C bond about 0.06 Å longer than the other.
In contrast, VOD, which correlates all threeπ electrons
equivalently, maintains symmetry. Likewise, UHF favors the
symmetric solution.

Revisiting the three homonuclear diatomics from our test set
above, we do see that, for F2

+ and O2
+, HF has not yet broken

spatial symmetry at the PES minimum in this basis set, as shown

by the Mulliken charge and spin population analysis results in
Table 4. In contrast, PP is already heavily symmetry-broken
for these species. This helps to explain the difficulty PP has
with these species. On the other hand, for N2

+, HF is far more
symmetry-broken than PP, and PP behaves much better than
HF. Overall, PP will sometimes help with symmetry-breaking
phenomena, particularly spin contamination. However, it is clear
that the asymmetry in the description of radical electrons and
pairs can provide the impetus for additional spatial symmetry
breaking, as in the allyl radical.

IV. Conclusions

Perfect pairing provides the leading correlation correction
beyond Hartree-Fock at only a slightly higher cost (some 3-5
times that of the HF calculation). We have extended the
restricted coupled cluster ansatz of PP to unrestricted wave
functions in a straightforward manner that treats unpaired
electrons in a UHF-like fashion and correlates only the valence
electron pairs. This formulation preserves the decoupling of the
cluster amplitude equations with a linear number of correlation
amplitudes that is characteristic of closed-shell PP and enables
UPP to correctly describe the separation of electron pairs.

In this article, we have not addressed how the coupled cluster
formulation of UPP used here differs from the alternative
unrestricted GVB one. The primary difference between the two
formulations is that the amplitudes are solved for projectively
in the CC version and variationally in the GVB version.24 The
projective approach is known to lead to spurious nonvariational
behavior in multiple-bond breaking using restricted CCD that
disappears if the CCD equations are solved variationally.53 The
fact that the CC version of PP treats each pair separately and
solves for the pair amplitude in a CI-like fashion suggests that
it should always be well-behaved. In no case, restricted or
unrestricted, have we ever observed such nonvariational be-
haviors with PP. Therefore, we do not anticipate significant
differences between the two formalisms. Nevertheless, inves-
tigating the unrestricted GVB formalism would make for an
interesting future study.

We have demonstrated that, in practice, this simple treatment
of the electron correlations makes noticeable improvements over
HF for a variety of systems and properties. Molecular structures
are slightly improved, and symmetry-breaking effects in radicals
are often reduced relative to HF. Furthermore, unlike HF or
most other high level correlation methods, PP can qualitatively
correctly describe bond breaking, diradicals, and so forth.

However, PP itself does suffer from various weaknesses.
Though it substantially improves upon HF, it comes nowhere
near eliminating the symmetry-broken solutions found in HF.
For the challenging diatomic radicals studied here,〈S2〉 values
are noticeably reduced, and F2

+ is bound, unlike at the UHF
level in many basis sets. A more complete correlation model
like VOD, in contrast, more significantly reduces the symmetry
breaking in these molecules (though, of course, it may not be
completely impervious to symmetry breaking either).

The use of orthogonal, localized orbitals causes PP to slightly
favorD3h symmetry overD6h symmetry for benzene or likewise
to predict that the allyl radical has two unequal carbon-carbon
bonds rather than equivalent ones. In cases such as these,
additional correlation effects must be included to remove the
symmetry breaking, such as with a nonorthogonal formalism.16

In addition, the asymmetry in how UPP treats the unpaired
electrons versus the paired ones can lead to some strange
chemical predictions in certain classes of systems. Singlet-
triplet gaps, for example, may be poor, as the singlet is

Figure 4. Symmetry breaking in the allyl radical in the cc-pVDZ basis.
The deformation,∆R, is relative to the UB3LYP/cc-pVDZ-optimized
symmetric structure. The UHF and VOD curves are virtually coincident
on the energy scale plotted here.

Figure 5. Occupiedπ molecular orbitals for allyl at the (a) ROHF,
(b) UHF, and (c) UPP levels in the cc-pVDZ basis, using the symmetric
UB3LYP/cc-pVDZ-optimized structure.
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preferentially stabilized relative to the triplet through the
correlation of an additional electron pair. This does counteract
the tendency of HF to favor the triplet due to the nature of the
exchange interaction, but it may overcompensate. For example,
in the 6-31G* basis,3F+ is only 3 kcal/mol more stable than
the singlet with UPP. In contrast, VOD prefers the triplet by
66 kcal/mol.

In the future, it will be very interesting to see what wave
function method offers the best compromise between cost and
accuracy in order to become established as the smallest useful
step beyond the HF model as a general-purpose reference wave
function. PP is one contender, given its general improvement
over HF combined with its affordability. Artifactual symmetry
breaking of the type discussed above is clearly its main
weakness, as may be valence-shell expansion in heavier
elements. Although more elaborate methods (for instance,
CASSCF or VOD) are more reliable, they cost significantly
more and often force the user to choose a limited number of
active electrons. PP describes a narrower range of phenomena
well but can do so without requiring any such input from the
user and at a very low cost. Its simplicity also recommends it
as a tractable starting point for a perturbative description of the
remaining correlations. We will report on just such a combina-
tion, the PP(2) method, soon.
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Phys. Lett.1995, 240, 283.

(22) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R.Theor. Chem.
Acc.1997, 97, 119.

(23) Ukrainskii, I. I.Theor. Math. Phys.1977, 32, 816.
(24) Cullen, J.Chem. Phys.1996, 202, 217.
(25) Van Voorhis, T.; Head-Gordon, M.J. Chem. Phys.2002, 117, 9190.
(26) Sano, T.THEOCHEM2000, 528, 177.
(27) Faglioni, F.; Goddard, W. A., III.Int. J. Quantum Chem.1999,

73, 1.
(28) Van Voorhis, T.; Head-Gordon, M.J. Chem. Phys.2001, 115, 7814.
(29) Van Voorhis, T.; Head-Gordon, M.Mol. Phys.2002, 100, 1713.
(30) Dunning, T. H., Jr.J. Chem. Phys.1989, 90, 1007.
(31) Sodt, A.; Beran, G. J. O.; Head-Gordon, M. Manuscript in

preparation, 2005.
(32) Pople, J. A.; Raghavachari, K.; Schlegel, H. B.; Binkley, J. S.Int.

J. Quantum Chem. Symp.1979, 13, 225.
(33) Gauss, J. InModern methods and algorithms of quantum chemistry;

Grotendorst, J., Ed.; NIC Series; John von Neumann Institute for Comput-
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